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INTRODUCTION

Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and
defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus
of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy
current methods used today are effective, but require long inspection times. New electromagnetic
techniques which monitor the normal component of the magnetic field above a sample due to a
sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and
analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A
simple theoretical model, coupled with a two dimensional finite element model (FEM) and
experimental data will be presented in the next few sections. 

 A current sheet above a conducting sample generates eddy currents in the material, while a
sensor above the current sheet or in between the two plates monitors the normal component of the
magnetic field [1,2]. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb
the magnetic field, which is imaged  by the sensor.
 

Initial results [2] showed a strong dependence of the flaw induced normal magnetic field
strength on the thickness and conductivity of the current-sheet that could not be accounted for by
skin depth attenuation alone. It was believed that the eddy current imaging method explained the
dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further
investigation, suggested the complexity associated with the mutual inductance of the system needed
to be studied. The next section gives an analytical model to better understand the phenomenon.



ANALYTICAL MODEL

The problem is too complex to obtain an exact solution, so a simplified model was created
to see what could be learned. A two dimensional two plate problem [2] was analyzed to model the
above system. Region 1 modeled the conducting sample as an infinite half space. The current sheet
was placed on top of this conducting half space, while another infinite conducting half space was
placed immediately above the current sheet (Fig. 1.). The underlying phenomenon is governed by
the quasi-static form of Maxwell’s equations, with the displacement current neglected. Governing
equation in the two conducting regions is the diffusion equation, while the fields are governed by
Laplace’s equation in air. The equations in region I, II and III respectively are :

∇ 2
A1 = jωµσ1A1 (1)

∇ 2
A2 = 0 (2)

∇ 2
A3 = jωµσ3A3 (3)

σ1, σ3 is the conductivity of the two half spaces, while the permeability is µ in all regions. ω is
the angular frequency and A1, A2 and A3 are the sinusoidal steady state RMS magnetic vector
potential. in the three regions respectively. The current density is given by

 J = J0ejωt (4)

where Jo is the steady state RMS surface value.
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Fig. 1.  Analytical model



The boundary conditions in the different regions are:

y = 0     A1 = A2     
∂A2

∂y
 = 

∂A1

∂y
(5)

y = 0     A2 = A3     
∂A2

∂y
 - 

∂A3

∂y
 = µJ (6)

y = ∞     A3 = 0 (7)

y = -∞     A1 = 0 (8)

Applying these boundary conditions, the solutions in the three regions are respectively,

A1 = aek1y (9)

A2 = by + c (10)

A3 = de-k3y (11) 

where k1 = (i+j) πfµσ1 ,  k3 = (i+j) πfµσ3  and the constants are 

  a = b /k1 (12)

 c = a (13)

d = 
y1ek3y1

y1k3+1
(µJ - c

y1
) (14) 

b = 
µ J

(1+ σ3
σ1

+y1 πfµσ3) + j πfµσ3y1

(15)

 The solution clearly indicates the dependence of the magnetic field strength above the
sample to be a function of the current sheet thickness, material properties, frequency, and the
distance between the sheet and the sample.The magnetic field in the air gap between the two half

spaces is proportional to b, which shows that the field decreases as σ3 increases for a constant

σ1. Practically this would correspond to decreasing the conductivity of the current sheet to obtain

higher field levels in the sensor coils.



FINITE ELEMENT MODEL

To obtain a better understanding of how the above results are related to the problem a finite
element (FE) model was constructed. A two dimensional FE model of the problem provided some
interesting observations. The model is given in Fig. 2. with the appropriate dimensions. The
typical procedure in finite elements is to discretize the region of interest, set up an energy functional
for the underlying differential equation to be solved, minimize this functional and finally solve a set
of linear equations. In this model the diffusion equation is solved for the magnetic vector potential.

The energy functional is the sum of the electric and magnetic energy in the system and is
given by

F = 1
2

1
µ

((∇ A)2 + jωσA2 - JsA)dv
vol

(16)

This functional is minimized with respect to the magnetic vector potential A at all the node points in
the region to obtain a set of linear equations given by

[S] {A} = {Q} (17)

where [S] is the complex, symmetric and banded global matrix, {A} is a vector of the unknowns
and {Q} is a vector of the boundary conditions. This matrix equation is solved using gaussian
elimination.
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                       Fig. 2.  Finite element model



Fig. 3 is a plot of the magnetic field as a function of the current sheet conductivity in %
IACS. This plot confirms that increasing the conductivity of the current sheet reduces the tangential
component of the magnetic field levels everywhere. Fig. 4 and Fig. 5 show the magnetic field
distribution above and below the current sheet as predicted by the FE model. The vector plot
clearly indicates that the field levels are higher for a stainless steel (SS) current sheet than a copper
(Cu) current sheet. This is surprising because for a current sheet having a width of .0625 mm, the
skin depth  decay across the current sheet should be negligible for both SS and Cu. Thus if the
field in between the sample and the current sheet were the same, the fields above the sheet should
be the same too. Since the field levels are not the same, the model indicates a strong mutual
interaction between the current sheet and the sample.

EXPERIMENTAL OBSERVATIONS

An aluminum sample with a 12 mm diameter hole and a 7 mm fatigue crack was scanned
by a pancake coil to monitor the normal component of the magnetic field. A 4.5 Amp sinusoidal ac
current at 30 kHz was the source. Details of the experimental setup can be found in an earlier
publication [2].

Fig. 6a and Fig. 6b.are plots of the normal component of the magnetic field above the Cu
current sheet and in between the current sheet and the sample for a fatigue crack. Similarly Fig. 7a
and Fig.  7b are plots for a SS current sheet. It is clear that the field levels above the current sheet

are much lower than that in between for both the SS and Cu current sheets. Also for a 775 µ (31

mils) SS current sheet the field levels are about four times higher than the 250 µ (10 mils) Cu
sheet. 
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Fig. 3.  Finite element prediction of the magnetic field strength for different conducting current
sheets.
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Fig. 4.  Finite element prediction of the magnetic field above and below a copper current sheet.
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Fig. 5.  Finite element prediction of the magnetic field above and below a stainless steel current
sheet.
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Fig. 6.  Normal magnetic field distribution for a fatigue crack in an aluminum sample for a 250 µ
(10 mils) copper current sheet a). in between the two sheets b). above the current sheet.

When the sample is placed beneath the current sheet, a mutual induction effect is developed
between the two plates [2]. Since these plates are placed very close to each other (few microns),
this effect is very predominant. Also eddy currents are induced in the sample generating a magnetic
field that opposes the primary magnetic field. These magnetic fields will induce eddy currents in
the current source, which will try to oppose the induced magnetic fields. This mutual effect of the
two plates reduces the fields in between as the current sheet thickness increases. Thus, the fields
above the current sheet get reduced with a decrease in the conductivity of the current sheet (increase
in the resistivity of the current sheet) or with an increase in the thickness of the current sheet.
Consequently, if a pick up coil is placed in between, then the field strengths are higher, resulting in
a higher pickup coil voltage. Practically this should increase the flaw detection capability in
conducting materials.

SUMMARY

To understand the physics of the phenomenon related to the two plate problem, an
analytical and finite element model were developed. The analytical model showed the strong mutual
inductance effect between the two plates. This was indicated by the complex dependence of the
magnetic field in between the plates on the conductivity of the current sheet. From the finite
element model and experimental data, one can conclude that the magnetic field decreases with :
a) an increase in the conductivity of the current sheet
b) an increase in the thickness of the current sheet.

Some of the future research includes reducing the distance between the current sheet and
the sample, developing tiny pickup coils for measurement of the fields in between the two plates,
and using a three dimensional model to look at various defects.
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Fig. 7.  Normal magnetic field distribution for a fatigue crack in an aluminum sample for a  775 µ
(31 mils) stainless steel current sheet.a). in between the sample and current sheet b). above the
current sheet. 
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